A model for the abrogation of the SOS response by an SOS protein: a negatively charged helix in DinI mimics DNA in its interaction with RecA.

نویسندگان

  • O N Voloshin
  • B E Ramirez
  • A Bax
  • R D Camerini-Otero
چکیده

DinI is a recently described negative regulator of the SOS response in Escherichia coli. Here we show that it physically interacts with RecA and prevents the binding of single-stranded DNA to RecA, which is required for the activation of the latter. DinI also displaces ssDNA from a stable RecA-DNA cofilament, thus eliminating the SOS signal. In addition, DinI inhibits RecA-mediated homologous DNA pairing, but has no effect on actively proceeding strand exchange. Biochemical data, together with the molecular structure, define the C-terminal alpha-helix in DinI as the active site of the protein. In an unusual example of molecular mimicry, a negatively charged surface on this alpha-helix, by imitating single-stranded DNA, interacts with the loop L2 homologous pairing region of RecA and interferes with the activation of RecA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two modes of binding of DinI to RecA filament provide a new insight into the regulation of SOS response by DinI protein.

RecA protein plays a principal role in bacterial SOS response to DNA damage. The induction of the SOS response is well understood and involves the cleavage of the LexA repressor catalyzed by the RecA nucleoprotein filament. In contrast, our understanding of the regulation and termination of the SOS response is much more limited. RecX and DinI are two major regulators of RecA's ability to promot...

متن کامل

Solution structure of DinI provides insight into its mode of RecA inactivation.

The Escherichia coli RecA protein triggers both DNA repair and mutagenesis in a process known as the SOS response. The 81-residue E. coli protein DinI inhibits activity of RecA in vivo. The solution structure of DinI has been determined by multidimensional triple resonance NMR spectroscopy, using restraints derived from two sets of residual dipolar couplings, obtained in bicelle and phage media...

متن کامل

An NMR study on the interaction of Escherichia coli DinI with RecA-ssDNA complexes.

The SOS response, a set of cellular phenomena exhibited by eubacteria, is initiated by various causes that include DNA damage-induced replication arrest, and is positively regulated by the co- protease activity of RecA. Escherichia coli DinI, a LexA-regulated SOS gene product, shuts off the initiation of the SOS response when overexpressed in vivo. Biochemical and genetic studies indicated that...

متن کامل

Differential Requirements of Two recA Mutants for Constitutive SOS Expression in Escherichia coli K-12

BACKGROUND Repairing DNA damage begins with its detection and is often followed by elicitation of a cellular response. In E. coli, RecA polymerizes on ssDNA produced after DNA damage and induces the SOS Response. The RecA-DNA filament is an allosteric effector of LexA auto-proteolysis. LexA is the repressor of the SOS Response. Not all RecA-DNA filaments, however, lead to an SOS Response. Certa...

متن کامل

Inhibition of Escherichia coli RecA coprotease activities by DinI.

In Escherichia coli, the SOS response is induced upon DNA damage and results in the enhanced expression of a set of genes involved in DNA repair and other functions. The initial step, self-cleavage of the LexA repressor, is promoted by the RecA protein which is activated upon binding to single-stranded DNA. In this work, induction of the SOS response by the addition of mitomycin C was found to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genes & development

دوره 15 4  شماره 

صفحات  -

تاریخ انتشار 2001